A291228 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - 2 S - 2 S^2.
2, 6, 18, 56, 170, 522, 1594, 4880, 14922, 45654, 139642, 427176, 1306690, 3997146, 12227058, 37402144, 114411538, 349980390, 1070575586, 3274847512, 10017625050, 30643508586, 93737246762, 286738430256, 877121205338, 2683078129590, 8207426973258
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 4, -2, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x^2); p = 1 - 2 s - 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291228 *) u/2 (* A291257 *) LinearRecurrence[{2,4,-2,-1},{2,6,18,56},30] (* Harvey P. Dale, Aug 08 2019 *)
Formula
G.f.: -((2 (-1 - x + x^2))/(1 - 2 x - 4 x^2 + 2 x^3 + x^4)).
a(n) = 2*a(n-1) + 4*a(n-2) - 2*a(n-3) - a(n-4) for n >= 5.
a(n) = 2*A291257(n) for n >= 0.
Comments