cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291228 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - 2 S - 2 S^2.

Original entry on oeis.org

2, 6, 18, 56, 170, 522, 1594, 4880, 14922, 45654, 139642, 427176, 1306690, 3997146, 12227058, 37402144, 114411538, 349980390, 1070575586, 3274847512, 10017625050, 30643508586, 93737246762, 286738430256, 877121205338, 2683078129590, 8207426973258
Offset: 0

Views

Author

Clark Kimberling, Aug 25 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - 2 s - 2 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291228 *)
    u/2         (* A291257 *)
    LinearRecurrence[{2,4,-2,-1},{2,6,18,56},30] (* Harvey P. Dale, Aug 08 2019 *)

Formula

G.f.: -((2 (-1 - x + x^2))/(1 - 2 x - 4 x^2 + 2 x^3 + x^4)).
a(n) = 2*a(n-1) + 4*a(n-2) - 2*a(n-3) - a(n-4) for n >= 5.
a(n) = 2*A291257(n) for n >= 0.