A291240 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S^3)^2.
0, 0, 2, 0, 6, 3, 12, 18, 24, 63, 66, 173, 222, 438, 722, 1146, 2142, 3213, 5958, 9327, 16210, 26898, 44400, 75875, 123252, 210240, 344160, 578052, 958200, 1588404, 2650008, 4370292, 7285684, 12022704, 19960488, 33008505, 54594504, 90368550, 149168350
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6,2,-15,-6,19,6,-15,-2,6,0,-1)
Programs
-
Mathematica
z = 60; s = x/(1 - x^2); p = (1 - s^3)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291240 *) LinearRecurrence[{0, 6, 2, -15, -6, 19, 6, -15, -2, 6, 0, -1}, {0, 0, 2, 0, 6, 3, 12, 18, 24, 63, 66, 173}, 40] (* Vincenzo Librandi, Aug 29 2017 *)
Formula
G.f.: -((x^2 (-2 + 6 x^2 + x^3 - 6 x^4 + 2 x^6))/((-1 + x + x^2)^2 (1 + x - x^2 - x^3 + x^4)^2)).
a(n) = 6*a(n-2) + 2*a(n-3) - 15*a(n-4) - 6*a(n-5) + 19*a(n-6) + 6*a(n-7) - 15*a(n-8) - 2*a(n-9) + 6*a(n-10) - a(n-12) for n >= 13.
Comments