A291242 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - 2 S - S^2 + S^3.
2, 5, 13, 35, 91, 241, 631, 1662, 4362, 11470, 30127, 79179, 208023, 546633, 1436257, 3773939, 9916134, 26055432, 68461966, 179888381, 472667065, 1241962303, 3263330095, 8574599917, 22530279167, 59199680826, 155550750026, 408719050346, 1073934109927
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,4,-5,-4,2,1)
Programs
-
Magma
I:=[2,5,13,35,91,241]; [n le 6 select I[n] else 2*Self(n-1)+4*Self(n-2)-5*Self(n-3)-4*Self(n-4)+2*Self(n-5)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 29 2017
-
Mathematica
z = 60; s = x/(1 - x^2); p = 1 - 2 s - s^2 + s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291242 *) LinearRecurrence[{2, 4, -5, -4, 2, 1}, {2, 5, 13, 35, 91, 241}, 30] (* Vincenzo Librandi, Aug 29 2017 *)
Formula
G.f.: (-2 - x + 5*x^2 + x^3 - 2*x^4)/(-1 + *x + 4 x^2 - 5*x^3 - 4*x^4 + 2*x^5 + x^6).
a(n) = 2*a(n-1) + 4*a(n-2) - 5*a(n-3) - 4*a(n-4) + 2*a(n-5) + a(n-6) for n >= 7.
Comments