A291250 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - 2 S^2 + 2 S^3.
1, 3, 4, 13, 17, 52, 69, 203, 272, 781, 1053, 2976, 4029, 11267, 15296, 42469, 57765, 159596, 217361, 598499, 815860, 2241165, 3057025, 8383872, 11440897, 31340691, 42781588, 117100285, 159881873, 437378260, 597260133, 1633244795, 2230504928, 6097779229
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 5, -4, -5, 1, 1)
Programs
-
Mathematica
z = 60; s = x/(1 - x^2); p = 1 - s - 2 s^2 + 2 s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291250 *) LinearRecurrence[{1,5,-4,-5,1,1},{1,3,4,13,17,52},40] (* Harvey P. Dale, May 13 2019 *)
Formula
G.f.: (-1 - 2 x + 4 x^2 + 2 x^3 - x^4)/(-1 + x + 5 x^2 - 4 x^3 - 5 x^4 + x^5 + x^6).
a(n) = a(n-1) + 5*a(n-2) - 4*a(n-3) - 5*a(n-4) + a(n-5) + a(n-6) for n >= 7.
Comments