A291253 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S - S^2)^2.
2, 5, 12, 30, 70, 166, 382, 881, 2002, 4540, 10210, 22891, 51050, 113506, 251430, 555466, 1223680, 2689591, 5898290, 12909880, 28204178, 61515521, 133961048, 291308806, 632628710, 1372170030, 2972790738, 6433570445, 13909116418, 30042364980, 64830556978
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 5, -8, -9, 8, 5, -2, -1)
Programs
-
GAP
P:=[2,5,12,30,70,166,382,881];; for n in [9..10^3] do P[n]:=2*P[n-1]+5*P[n-2]-8*P[n-3]-9*P[n-4]+8*P[n-5]+5*P[n-6]-2*P[n-7]-P[n-8]; od; P; # Muniru A Asiru, Sep 03 2017
-
Mathematica
z = 60; s = x/(1 - x^2); p = (1 - s - s^2)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291253 *)
Formula
G.f.: (2 + x - 8 x^2 - 3 x^3 + 8 x^4 + x^5 - 2 x^6)/(1 - x - 3 x^2 + x^3 + x^4)^2.
a(n) = 2*a(n-1) + 5*a(n-2) - 8*a(n-3) - 9*a(n-4) + 8*a(n-5) + 5*a(n-6) - 2*a(n-7) - a(n-8) for n >= 9.
Comments