cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291288 a(n) = binomial(n+3, 3)*(1 + binomial(n+2, 3)/4).

Original entry on oeis.org

1, 5, 20, 70, 210, 546, 1260, 2640, 5115, 9295, 16016, 26390, 41860, 64260, 95880, 139536, 198645, 277305, 380380, 513590, 683606, 898150, 1166100, 1497600, 1904175, 2398851, 2996280, 3712870, 4566920, 5578760, 6770896, 8168160, 9797865, 11689965
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2017

Keywords

Programs

  • Maple
    f:=n->binomial(n+3,3)*(1+binomial(n+2,3)/4);
    [seq(f(n),n=0..40)];
  • Mathematica
    Table[Binomial[n+3,3](1+Binomial[n+2,3]/4),{n,0,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,5,20,70,210,546,1260},40] (* Harvey P. Dale, Mar 12 2024 *)

Formula

From Robert Israel, Aug 28 2017: (Start)
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(n^2-n+6)/144.
n*a(n) - (2+3*n)*a(n-1) + (8*n-16)*a(n-2) - (12+6*n)*a(n-3) = 0.
G.f.: (6*x^2-2*x+1)/(1-x)^7. (End)