A291302 a(n) = number of steps to reach a prime when x -> sigma(x)-1 is repeatedly applied to the product of the first n primes, or -1 if no prime is ever reached.
0, 1, 1, 2, 1, 3, 3, 1, 3, 4, 46, 57, 7, 9, 17, 1, 45, 1, 33, 8, 10, 4, 3, 32, 6, 47, 17, 21, 41, 17, 12, 11, 10, 31, 74, 25, 99, 11
Offset: 1
Examples
2*3*5*7*11*13 = 30030 -> 96767 -> 111359 -> 117239 takes three steps to reach a prime, so a(6) = 3.
Programs
-
Maple
A291302 := proc(n) local a,x ; a := 0 ; x := mul(ithprime(i),i=1..n) ; while not isprime(x) do x := numtheory[sigma](x)-1 ; a := a+1 ; end do: a ; end proc: # R. J. Mathar, Sep 12 2017
-
Mathematica
p[n_]:=Times@@Prime/@Range[n];f[n_]:=DivisorSigma[1,n]-1; a[n_]:=Length[NestWhileList[f,p[n],CompositeQ]]-1;a/@Range[34] (* Ivan N. Ianakiev, Sep 01 2017 *)
-
Python
from sympy import primorial, isprime, divisor_sigma def A291302(n): m, c = primorial(n), 0 while not isprime(m): m = divisor_sigma(m) - 1 c += 1 return c # Chai Wah Wu, Aug 31 2017
Extensions
a(11)-a(35) from Chai Wah Wu, Aug 31 2017
a(36)-a(38) from Ivan N. Ianakiev, Sep 01 2017