cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291318 Semiprimes of the form p*q such that p+q-1 is prime.

Original entry on oeis.org

4, 9, 15, 33, 35, 49, 51, 65, 77, 87, 91, 95, 119, 123, 143, 161, 177, 185, 209, 213, 215, 217, 221, 247, 259, 287, 303, 321, 329, 335, 341, 361, 371, 377, 395, 403, 407, 411, 427, 437, 447, 469, 473, 485, 511, 515, 527, 533, 537, 545, 551, 573, 581, 591, 611, 629
Offset: 1

Views

Author

Vincenzo Librandi, Aug 22 2017

Keywords

Comments

Obviously, 4 is the only even term.
The terms divisible by 3 are 3*A001359. - Robert Israel, Aug 22 2017

Examples

			4 = 2*2 and 2+2-1 is prime, so 4 is a term.
185 = 5*37 and 5+37-1 is prime, so 185 is a term.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get terms <= N
    OddPrimes:= select(isprime, [seq(i,i=3..N/3,2)]):
    R:= select(t -> t[1]*t[2]<= N and isprime(t[1]+t[2]-1), [[2,2],seq(seq([OddPrimes[i],OddPrimes[j]],j=1..i),i=1..nops(OddPrimes))]):
    sort(map(t -> t[1]*t[2],R)); # Robert Israel, Aug 22 2017
  • Mathematica
    With[{nn=60}, Take[#, nn]&@Union@Flatten@Table[Function[p, Map[Times@@#&@#&, #]&@Select[Map[{p, #}&, Prime@Range[PrimePi@p]], PrimeQ[Total@# - 1] &]]@Prime@n,{n, nn + 4}]]
    (* Second program: *)
    Select[Range@ 630, And[Length@ # == 2, PrimeQ[First@ # + Last@ # - 1]] &@
    Flatten@Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[#]] &] (* Michael De Vlieger, Aug 22 2017 *)
  • PARI
    list(lim)=my(v=List([4])); forprime(p=3,lim\3, forprime(q=3,min(lim\p,p), if(isprime(p+q-1), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017