cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291330 The arithmetic function v_4(n,1).

Original entry on oeis.org

0, 2, 0, 4, 4, 6, 4, 8, 8, 10, 8, 12, 12, 14, 12, 16, 16, 18, 16, 20, 20, 22, 20, 24, 24, 26, 24, 28, 28, 30, 28, 32, 32, 34, 32, 36, 36, 38, 36, 40, 40, 42, 40, 44, 44, 46, 44, 48, 48, 50, 48, 52, 52, 54, 52, 56, 56, 58, 56, 60, 60, 62, 60, 64, 64, 66, 64, 68, 68
Offset: 2

Views

Author

Robert Price, Aug 22 2017

Keywords

References

  • J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).

Crossrefs

Programs

  • Maple
    seq(n-gcd(n,4), n=2..100); # Ridouane Oudra, Dec 15 2024
  • Mathematica
    v[g_, n_, h_] := (d = Divisors[n]; Max[(Floor[(d - 1 - GCD[d, g])/h] + 1)*n/d]); Table[v[4, n, 1], {n, 2, 70}]
  • PARI
    /* Adapted from Mathematica program */
    v(g, n, h) = my(d=divisors(n)); for(k=1, #d, d[k]=floor(((d[k]-1-gcd(d[k], g))/h) + 1)*n/d[k]); vecmax(d)
    a(n) = v(4, n, 1) \\ Felix Fröhlich, Aug 22 2017

Formula

a(n) = n - gcd(n,4) = n - A109008(n). - Ridouane Oudra, Dec 15 2024
Sum_{n>=5} (-1)^n/a(n) = (1 - log(2))/2. - Amiram Eldar, Jan 15 2025