A291336 Number F(n,h,t) of forests of t unlabeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 2, 1, 0, 4, 3, 1, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 3, 2, 1, 0, 6, 8, 3, 1, 0, 8, 4, 1, 0, 4, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 4, 3, 2, 1, 0, 10, 15, 9, 3, 1, 0, 18, 13, 4, 1, 0, 13, 5, 1, 0, 5, 1, 0, 1, 0
Offset: 0
Examples
n h\t: 0 1 2 3 4 5 : A034781 : A033185 : A000081 -----+-------------+---------+-----------+-------- 0 0 : 1 : : : 1 -----+-------------+---------+-----------+-------- 1 0 : 0 1 : 1 : . : 1 1 : 0 : : 1 : 1 -----+-------------+---------+-----------+-------- 2 0 : 0 0 1 : 1 : . . : 2 1 : 0 1 : 1 : . : 2 2 : 0 : : 1 1 : 2 -----+-------------+---------+-----------+-------- 3 0 : 0 0 0 1 : 1 : . . . : 3 1 : 0 1 1 : 2 : . . : 3 2 : 0 1 : 1 : . : 3 3 : 0 : : 2 1 1 : 4 -----+-------------+---------+-----------+-------- 4 0 : 0 0 0 0 1 : 1 : . . . . : 4 1 : 0 1 2 1 : 4 : . . . : 4 2 : 0 2 1 : 3 : . . : 4 3 : 0 1 : 1 : . : 4 4 : 0 : : 4 3 1 1 : 9 -----+-------------+---------+-----------+-------- 5 0 : 0 0 0 0 0 1 : 1 : . . . . . : 5 1 : 0 1 2 2 1 : 6 : . . . . : 5 2 : 0 4 3 1 : 8 : . . . : 5 3 : 0 3 1 : 4 : . . : 5 4 : 0 1 : 1 : . : 5 5 : 0 : : 9 6 3 1 1 : 20 -----+-------------+---------+-----------+--------
Links
- Alois P. Heinz, Layers n = 0..48, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0 or i=1, x^(t*n), b(n, i-1, t, h)+add(x^(t*j)*binomial( b(i-1$2, 0, h-1)+j-1, j)*b(n-i*j, i-1, t, h), j=1..n/i))) end: g:= (n, h)-> b(n$2, 1, h)-`if`(h=0, 0, b(n$2, 1, h-1)): F:= (n, h, t)-> coeff(g(n, h), x, t): seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..9);
-
Mathematica
b[n_, i_, t_, h_] := b[n, i, t, h] = Expand[If[n == 0 || h == 0 || i == 1, x^(t*n), b[n, i-1, t, h] + Sum[x^(t*j)*Binomial[ b[i-1, i-1, 0, h-1]+j-1, j]*b[n - i*j, i-1, t, h], {j, 1, n/i}]]]; g[n_, h_] := b[n, n, 1, h] - If[h == 0, 0, b[n, n, 1, h-1]]; F[n_, h_, t_] := Coefficient[g[n, h], x, t]; Table[Table[Table[F[n, h, t], {t, 0, n-h}], {h, 0, n}], {n, 0, 9}] // Flatten (* Jean-François Alcover, Mar 10 2022, after Alois P. Heinz *)
Comments