A291343 Numbers k such that k!4 + 2^3 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).
3, 5, 7, 9, 11, 13, 19, 23, 25, 33, 39, 41, 63, 67, 71, 85, 87, 91, 133, 171, 243, 291, 1239, 1543, 1879, 2169, 2421, 3149, 3323, 3377, 3501, 3529, 5433, 5599, 7299, 11227, 11275, 13939, 27147, 32435, 86455, 92105
Offset: 1
Examples
13!4 + 2^3 = 13*9*5*1 + 8 = 593 is prime, so 13 is in the sequence.
Links
- Henri & Renaud Lifchitz, PRP Records. Search for n!4+8.
- Joe McLean, Interesting Sources of Probable Primes
- OpenPFGW Project, Primality Tester
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^3] &] Select[Range[100000],PrimeQ[Times@@Range[#,1,-4]+8]&] (* Harvey P. Dale, Oct 29 2022 *)
Extensions
a(41)-a(42) from Robert Price, Sep 25 2019
Comments