A291345 Numbers k such that k!4 + 2^5 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).
5, 7, 11, 13, 19, 21, 25, 27, 35, 37, 51, 55, 65, 71, 105, 107, 129, 223, 229, 273, 307, 337, 345, 479, 509, 517, 519, 921, 963, 993, 1309, 1697, 1855, 1871, 2451, 2573, 2755, 3059, 3271, 4005, 4823, 17079, 20209, 20559, 37845, 38343, 68383, 79617, 81539
Offset: 1
Examples
13!4 + 2^5 = 13*9*5*1 + 32 = 617 is prime, so 13 is in the sequence.
Links
- Henri & Renaud Lifchitz, PRP Records. Search for n!4+32.
- Joe McLean, Interesting Sources of Probable Primes
- OpenPFGW Project, Primality Tester
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^5] &] Select[Range[82000],PrimeQ[Times@@Range[#,1,-4]+32]&] (* Harvey P. Dale, Apr 11 2022 *)
Extensions
a(47)-a(49) from Robert Price, Sep 25 2019
Comments