A291371 Number of maximal chord diagrams of genus g counted up to rotations and reflections.
1, 4, 82, 7258, 1491629, 506855279, 254118439668, 176377605783906, 162019808170348933, 190375587419231088550, 278587959330563466969926, 496903413656110608290219603
Offset: 1
Keywords
Links
- Evgeniy Krasko, Counting Unlabelled Chord Diagrams of Maximal Genus, arXiv:1709.00796 [math.CO], 2017.
- Evgeny Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016; Electronic Journal of Combinatorics 24(3) (2017), #P3.43
Crossrefs
Maximal diagrams up to rotations: A291172.
Programs
-
Python
# Python version 2.7 rot_sym = [ 0, 1, 4, 131, 14118, 2976853, 1013582110, 508233789579, 352755124921122, 324039613564554401, 380751174738424280720, 557175918657122229139987, 993806827312044893602464496, # A291172 ] def u(n): if n < 0: return 0 if n <= 1: return 1 sum = 0 sum -= (4 * n - 1) * u(n - 1) sum += n * (2 * n - 3) * (10 * n - 9) * u(n - 2) sum += 5 * (2 * n - 3) * (2 * n - 4) * (2 * n - 5) * u(n - 3) sum -= 2 * (2 * n - 3) * (2 * n - 4) * (2 * n - 5) * (2 * n - 6) * (2 * n - 7) * u(n - 4) return sum / (n + 1) for i in range(1, 13): print (2 * rot_sym[i] + u(i) + u(i - 1) * (2 * i - 1)) / 4
Comments