cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291374 Primes p such that p^3*q^3 + p + q is prime, where q is next prime after p.

Original entry on oeis.org

11, 17, 41, 43, 47, 137, 313, 359, 389, 401, 491, 557, 577, 709, 757, 829, 863, 929, 937, 953, 1129, 1163, 1249, 1301, 1307, 1439, 1597, 1627, 1693, 1847, 2087, 2311, 2351, 2437, 2663, 2731, 2741, 3109, 3119, 3217, 3253, 4027, 4219, 4271, 4547, 4637, 5189, 5237
Offset: 1

Views

Author

K. D. Bajpai, Aug 23 2017

Keywords

Examples

			a(1) = 11 is prime; 13 is the next prime: 11^3*13^3 + 11 + 13 = 1331*2197 + 11 + 13 = 2924231 that is a prime.
a(2) = 17 is prime; 19 is the next prime: 17^3*19^3 + 17 + 19 = 4913*6859 + 17 + 19 = 33698303 that is a prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | IsPrime(p^3*q^3 + p + q) where q is NextPrime(p)];
  • Maple
    select(p -> andmap(isprime, [p,(p^3*nextprime(p)^3+p+nextprime(p))]), [seq(p,p=1..10^4)]);
  • Mathematica
    Prime@Select[Range[1000], PrimeQ[Prime[#]^3* Prime[# + 1]^3 + Prime[#] + Prime[# + 1]] &]
  • PARI
    forprime(p=1,5000, q=nextprime(p+1); if(ispseudoprime(p^3*q^3 + p + q), print1(p, ", ")));
    
  • PARI
    list(lim)=my(v=List(),p=2,p3=8,q3); forprime(q=3,nextprime(lim\1+1), q3=q^3; if(isprime(p3*q3+p+q), listput(v,p)); p=q; p3=q3); Vec(v) \\ Charles R Greathouse IV, Aug 23 2017