A291375 Irregular triangle read by rows: number of maximal irredundant sets of size k in the n-path graph.
0, 1, 0, 2, 0, 1, 1, 0, 0, 4, 0, 0, 5, 1, 0, 0, 2, 6, 0, 0, 0, 12, 1, 0, 0, 0, 8, 9, 0, 0, 0, 1, 25, 1, 0, 0, 0, 0, 28, 12, 0, 0, 0, 0, 12, 44, 1, 0, 0, 0, 0, 2, 68, 16, 0, 0, 0, 0, 0, 48, 73, 1, 0, 0, 0, 0, 0, 14, 150, 20, 0, 0, 0, 0, 0, 1, 155, 112, 1
Offset: 1
Examples
Triangle begins: 0, 1; 0, 2; 0, 1, 1; 0, 0, 4; 0, 0, 5, 1; 0, 0, 2, 6; 0, 0, 0, 12, 1; 0, 0, 0, 8, 9; 0, 0, 0, 1, 25, 1; 0, 0, 0, 0, 28, 12; 0, 0, 0, 0, 12, 44, 1; 0, 0, 0, 0, 2, 68, 16; ... As polynomials these are: x; 2*x; x + x^2; 4*x^2; 5*x^2 + x^3; etc.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..990
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
- Eric Weisstein's World of Mathematics, Path Graph.
Crossrefs
Row sums of A291055.
Formula
T(n,k) = 0 for k < ceiling(n/3).
Comments