A291387 p-INVERT of (1,1,0,0,0,0,...), where p(S) = (1 - 4 S)^2.
8, 56, 352, 2096, 12032, 67328, 369664, 2000128, 10696704, 56666112, 297836544, 1555066880, 8073379840, 41709076480, 214558048256, 1099562549248, 5616171483136, 28599668703232, 145249047412736, 735884541427712, 3720035809886208, 18767645931208704
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -8, -32, -16)
Programs
-
GAP
a:=8*[1,7,44,262];; for n in [5..10^2] do a[n]:=8*a[n-1]-8*a[n-2]-32*a[n-3]-16*a[n-4]; od; a; # Muniru A Asiru, Sep 07 2017
-
Mathematica
z = 60; s = x + x^2; p = (1 - 4 s)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291387 *) u / 8 (* A291388 *)
Formula
G.f.: -((8 (1 + x) (-1 + 2 x + 2 x^2))/(-1 + 4 x + 4 x^2)^2).
a(n) = 8*a(n-1) - 8*a(n-2) - 32*a(n-3) - 16*a(n-4) for n >= 5.
Comments