A291389 p-INVERT of (1,1,0,0,0,0,...), where p(S) = (1 - 5 S)^2.
10, 85, 650, 4700, 32750, 222375, 1481250, 9721875, 63062500, 405175000, 2582687500, 16353078125, 102955156250, 644991640625, 4023367968750, 25002220312500, 154848222656250, 956155732421875, 5888138769531250, 36171585068359375, 221714776953125000
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10, -15, -50, -25)
Programs
-
GAP
a:=5*[2,17,130,940];; for n in [5..10^2] do a[n]:=10*a[n-1]-15*a[n-2]-50*a[n-3]-25*a[n-4]; od; a; # Muniru A Asiru, Sep 07 2017
-
Mathematica
z = 60; s = x + x^2; p = (1 - 5 s)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291389 *) u / 5 (* A291390 *)
Formula
G.f.: -((5 (1 + x) (-2 + 5 x + 5 x^2))/(-1 + 5 x + 5 x^2)^2).
a(n) = 10*a(n-1) - 15*a(n-2) - 50*a(n-3) - 25*a(n-4) for n >= 5.
Comments