A291398 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - S^2 - S^3.
0, 1, 3, 5, 9, 19, 39, 76, 150, 301, 600, 1191, 2370, 4721, 9396, 18696, 37212, 74069, 147417, 293398, 583956, 1162257, 2313237, 4604037, 9163443, 18238042, 36299229, 72246487, 143792475, 286190708, 569606421, 1133689810, 2256387135, 4490895817, 8938246848
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 3, 4, 3, 1)
Programs
-
Mathematica
z = 60; s = x + x^2; p = 1 - s^2 - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291398 *) LinearRecurrence[{0,1,3,4,3,1},{0,1,3,5,9,19},40] (* Harvey P. Dale, Dec 13 2017 *)
Formula
G.f.: -((x (1 + x)^2 (1 + x + x^2))/(-1 + x^2 + 3 x^3 + 4 x^4 + 3 x^5 + x^6)).
a(n) = a(n-2) + 3*a(n-3) + 4*a(n-4) + 3*a(n-5) + a(n-6) for n >= 7.
Comments