A291402 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - S^3 - S^4.
0, 0, 1, 4, 7, 8, 12, 31, 71, 125, 201, 367, 749, 1471, 2679, 4814, 9014, 17304, 32739, 60683, 112444, 210938, 397800, 746347, 1392898, 2601701, 4876692, 9149911, 17138518, 32060349, 60002060, 112404852, 210600344, 394370928, 738281497, 1382360598
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 4, 7, 7, 4, 1)
Programs
-
Mathematica
z = 60; s = x + x^2; p = 1 - s^3 - s^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291402 *) LinearRecurrence[{0,0,1,4,7,7,4,1},{0,0,1,4,7,8,12,31},40] (* Harvey P. Dale, Feb 20 2020 *)
Formula
G.f.: -((x^2 (1 + x)^3 (1 + x + x^2))/(-1 + x^3 + 4 x^4 + 7 x^5 + 7 x^6 + 4 x^7 + x^8)).
a(n) = a(n-3) + 4*a(n-4) + 7*a(n-5) + 7*a(n-6) + 4*a(n-7) + a(n-8) for n >= 9.
Comments