A291409 p-INVERT of (1,1,0,0,0,0,...), where p(S) = (1 - S^2)(1 - S)^2.
2, 6, 14, 31, 66, 136, 272, 534, 1030, 1958, 3678, 6837, 12594, 23016, 41768, 75325, 135084, 241032, 428112, 757236, 1334292, 2342892, 4100676, 7155937, 12453170, 21616242, 37432010, 64675099, 111512574, 191893120, 329605760, 565166682, 967491754, 1653659282
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 2, -2, -5, -2, 4, 4, 1)
Programs
-
Mathematica
z = 60; s = x + x^2; p = (1 - s^2)(1 - s)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291409 *) LinearRecurrence[{2,2,-2,-5,-2,4,4,1},{2,6,14,31,66,136,272,534},40] (* Harvey P. Dale, May 12 2024 *)
Formula
G.f.: -(((1 + x) (2 - 2 x^2 - 3 x^3 + x^4 + 3 x^5 + x^6))/((-1 + x + x^2)^3 (1 + x + x^2))).
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - 5*a(n-4) - 2*a(n-5) + 4*a(n-6) + 4*a(n-7) + a(n-8) for n >= 9.
Comments