A291410 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - S - S^2 - 2 S^3.
1, 3, 9, 26, 69, 186, 511, 1401, 3824, 10438, 28521, 77938, 212928, 581700, 1589231, 4341911, 11862339, 32408429, 88541424, 241899801, 660882666, 1805564823, 4932894579, 13476918898, 36819627664, 100593093135, 274825440378, 750837066710, 2051325016200
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 2, 4, 7, 6, 2)
Programs
-
GAP
a:=[1,3,9,26,69,186];; for n in [7..10^2] do a[n]:=a[n-1]+2*a[n-2]+4*a[n-3]+7*a[n-4]+6*a[n-5]+2*a[n-6]; od; a; # Muniru A Asiru, Sep 12 2017
-
Mathematica
z = 60; s = x + x^2; p = 1 - s - s^2 - 2 s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291410 *) CoefficientList[ Series[-(2x^5 +6x^4 +7x^3 +4x^2 +2x +1)/(2x^6 +6x^5 +7x^4 +4x^3 +2x^2 +x- 1), {x, 0, 28}], x] (* or *) LinearRecurrence[{1, 2, 4, 7, 6, 2}, {1, 3, 9, 26, 69, 186}, 29] (* Robert G. Wilson v, Sep 25 2017 *)
Formula
G.f.: -(((1 + x) (1 + x + 3 x^2 + 4 x^3 + 2 x^4))/((-1 + 2 x + 2 x^2) (1 + x + 2 x^2 + 2 x^3 + x^4))).
a(n) = a(n-1) + 2*a(n-2) + 4*a(n-3) + 7*a(n-4) + 6*a(n-5) + 2*a(n-6) for n >= 7.
Comments