A291411 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2 + S^3.
2, 7, 21, 63, 189, 567, 1699, 5092, 15260, 45731, 137046, 410697, 1230768, 3688339, 11053134, 33123790, 99264648, 297474121, 891463923, 2671519536, 8005951162, 23992058879, 71898875923, 215464974683, 645700711159, 1935021731510, 5798830691535, 17377808652745
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 3, 1, -2, -3, -1)
Programs
-
GAP
a:=[2,7,21,63,189,567];; for n in [7..10^2] do a[n]:=2*a[n-1]+3*a[n-2]+a[n-3]-2*a[n-4]-3*a[n-5]-a[n-6]; od; a; # Muniru A Asiru, Sep 12 2017
-
Mathematica
z = 60; s = x + x^2; p = 1 - 2 s - s^2 + s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291411 *)
Formula
G.f.: -(((-1 + x) (1 + x) (2 + x) (1 + x + x^2))/(1 - 2 x - 3 x^2 - x^3 + 2 x^4 + 3 x^5 + x^6)).
a(n) = 2*a(n-1) + 3*a(n-2) + a(n-3) - 2*a(n-4) - 3*a(n-5) - a(n-6) for n >= 7.
Comments