A291413 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 3 S + S^2 + S^3.
3, 11, 36, 117, 375, 1197, 3810, 12112, 38478, 122198, 388008, 1231911, 3911097, 12416751, 39419610, 125145175, 397296363, 1261288403, 4004182620, 12711979296, 40356397332, 128118414852, 406734209280, 1291248512101, 4099293000471, 13013918567075
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 2, -3, -4, -3, -1)
Programs
-
GAP
a:=[3,11,36,117,375,1197];; for n in [7..10^3] do a[n]:=3*a[n-1]+ 2*a[n-2]-3*a[n-3]-4*a[n-4]-3*a[n-5]-a[n-6]; od; a; # Muniru A Asiru, Sep 12 2017
-
Mathematica
z = 60; s = x + x^2; p = 1 - 3 s + s^2 + s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291413 *)
Formula
G.f.: -(((1 + x) (-3 + x + 2 x^2 + 2 x^3 + x^4))/((-1 + x + x^2) (-1 + 2 x + 3 x^2 + 2 x^3 + x^4))).
a(n) = 3*a(n-1) + 2*a(n-2) - 3*a(n-3) - 4*a(n-4) - 3*a(n-5) - a(n-6) for n >= 7.
Comments