A291444 Number of symmetric maximal irredundant sets in the n-path graph.
1, 0, 2, 2, 2, 2, 3, 3, 5, 6, 7, 6, 10, 12, 15, 15, 22, 23, 33, 35, 48, 48, 71, 75, 103, 106, 152, 158, 225, 234, 329, 338, 484, 505, 710, 734, 1044, 1084, 1536, 1594, 2257, 2335, 3317, 3444, 4871, 5047, 7161, 7429, 10528, 10916, 15470, 16033, 22737, 23582
Offset: 1
Keywords
Examples
Case n=5: maximal irredundant sets represented as binary words are {00110, 01001, 01010, 01100, 10010, 10101}. Of these, only 01010 and 10101 are symmetrical, so a(5) = 2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set
- Eric Weisstein's World of Mathematics, Path Graph
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, -1, 0, -2, 0, -1, 0, 2, 0, 1, 0, 0, 0, 0, 0, -1).
Crossrefs
Cf. A291055.
Programs
-
PARI
Vec((1 + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + x^7 + 2*x^9 - x^10 - x^11 - 2*x^12 - x^13 - x^14 - 2*x^15 + x^16 - 2*x^17 + 3*x^18 + 2*x^19 + x^20 + x^21 - x^22 - x^24 - x^26 - x^27)/(1 - x^4 - x^6 - x^8 - x^10 + x^14 + 2*x^16 + x^18 - 2*x^20 - x^22 + x^28) + O(x^50))
Formula
a(n) = a(n-4) + a(n-6) + a(n-8) + a(n-10) - a(n-14) - 2*a(n-16) - a(n-18) + 2*a(n-20) + a(n-22) - a(n-28) for n > 28.
G.f.: x*(1 + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + x^7 + 2*x^9 - x^10 - x^11 - 2*x^12 - x^13 - x^14 - 2*x^15 + x^16 - 2*x^17 + 3*x^18 + 2*x^19 + x^20 + x^21 - x^22 - x^24 - x^26 - x^27)/(1 - x^4 - x^6 - x^8 - x^10 + x^14 + 2*x^16 + x^18 - 2*x^20 - x^22 + x^28).