cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291445 Number of permutations s_1,s_2,...,s_n of 1,2,...,n such that for all j=1,2,...,n, Sum_{i=1..j} s_i divides Sum_{i=1..j} s_i^3.

Original entry on oeis.org

1, 2, 6, 12, 30, 78, 186, 414, 912, 2064, 4338, 9798, 20106, 40974, 80196, 158322, 309414, 615558, 1212402, 2417136, 4776654, 9497508, 18726708, 37056150, 72946116, 144230640, 284660874, 564451830, 1118803818, 2224792026, 4420041210, 8791590168, 17456783136
Offset: 1

Views

Author

Seiichi Manyama, Aug 23 2017

Keywords

Comments

The permutation [1,...,n] satisfies the conditions since Sum_{i=1..n} i^3 = (Sum_{i=1..n})^2. Similarly, [n,...,1] satisfies the conditions since Sum_{i=m..n} i^3 = (Sum_{i=m..n} i)*(n*(n+1)+m*(m-1))/2. Thus a(n) >= 2 for n > 1 and a(n) is nondecreasing. Seems to approximately double for each successive n. - Chai Wah Wu, Aug 24 2017

Examples

			5                 divides 5^3,
5 + 4             divides 5^3 + 4^3,
5 + 4 + 3         divides 5^3 + 4^3 + 3^3,
5 + 4 + 3 + 2     divides 5^3 + 4^3 + 3^3 + 2^3,
5 + 4 + 3 + 2 + 1 divides 5^3 + 4^3 + 3^3 + 2^3 + 1^3.
So [5, 4, 3, 2, 1] satisfies all the conditions.
1                     divides 1^3,
1 + 2                 divides 1^3 + 2^3,
1 + 2 + 6             divides 1^3 + 2^3 + 6^3,
1 + 2 + 6 + 5         divides 1^3 + 2^3 + 6^3 + 5^3,
1 + 2 + 6 + 5 + 4     divides 1^3 + 2^3 + 6^3 + 5^3 + 4^3,
1 + 2 + 6 + 5 + 4 + 3 divides 1^3 + 2^3 + 6^3 + 5^3 + 4^3 + 3^3.
So [1, 2, 6, 5, 4, 3] satisfies all the conditions.
-------------------------------------------------------
a(1) = 1: [[1]];
a(2) = 2: [[1, 2], [2, 1]];
a(3) = 6: [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]];
a(4) = 12: [[1, 2, 3, 4], [1, 3, 2, 4], [2, 1, 3, 4], [2, 3, 1, 4], [2, 3, 4, 1], [2, 4, 3, 1], [3, 1, 2, 4], [3, 2, 1, 4], [3, 2, 4, 1], [3, 4, 2, 1], [4, 2, 3, 1], [4, 3, 2, 1]];
a(5) = 30: [[1, 2, 3, 4, 5], [1, 3, 2, 4, 5], [2, 1, 3, 4, 5], [2, 3, 1, 4, 5], [2, 3, 4, 1, 5], [2, 3, 4, 5, 1], [2, 3, 5, 4, 1], [2, 4, 3, 1, 5], [2, 4, 3, 5, 1], [2, 5, 3, 4, 1], [3, 1, 2, 4, 5], [3, 2, 1, 4, 5], [3, 2, 4, 1, 5], [3, 2, 4, 5, 1], [3, 2, 5, 4, 1], [3, 4, 2, 1, 5], [3, 4, 2, 5, 1], [3, 4, 5, 2, 1], [3, 5, 2, 4, 1], [3, 5, 4, 2, 1], [4, 2, 3, 1, 5], [4, 2, 3, 5, 1], [4, 3, 2, 1, 5], [4, 3, 2, 5, 1], [4, 3, 5, 2, 1], [4, 5, 3, 2, 1], [5, 2, 3, 4, 1], [5, 3, 2, 4, 1], [5, 3, 4, 2, 1], [5, 4, 3, 2, 1]].
		

Crossrefs

Extensions

a(13)-a(33) from Chai Wah Wu, Aug 24 2017

A291518 Number of permutations s_1,s_2,...,s_n of 1,2,...,n with s_n = n (if n>0) and such that for all j=1,2,...,n, Sum_{i=1..j} s_i divides Sum_{i=1..j} s_i^3.

Original entry on oeis.org

1, 1, 1, 2, 6, 12, 30, 78, 186, 414, 912, 2064, 4338, 9798, 20106, 40974, 80196, 158322, 309414, 615558, 1212402, 2417136, 4776654, 9497508, 18726708, 37056150, 72946116, 144230640, 284660874, 564451830, 1118803818, 2224792026, 4420041210, 8791590168
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2017

Keywords

Examples

			1                 divides 1^3,
1 + 2             divides 1^3 + 2^3,
1 + 2 + 3         divides 1^3 + 2^3 + 3^3,
1 + 2 + 3 + 4     divides 1^3 + 2^3 + 3^3 + 4^3,
1 + 2 + 3 + 4 + 5 divides 1^3 + 2^3 + 3^3 + 4^3 + 5^3.
So [1, 2, 3, 4, 5] satisfies all the conditions.
-------------------------------------------------------
a(1) = 1: [[1]];
a(2) = 1: [[1, 2]];
a(3) = 2: [[1, 2, 3], [2, 1, 3]];
a(4) = 6: [[1, 2, 3, 4], [1, 3, 2, 4], [2, 1, 3, 4], [2, 3, 1, 4], [3, 1, 2, 4], [3, 2, 1, 4]];
a(5) = 12: [[1, 2, 3, 4, 5], [1, 3, 2, 4, 5], [2, 1, 3, 4, 5], [2, 3, 1, 4, 5], [2, 3, 4, 1, 5], [2, 4, 3, 1, 5], [3, 1, 2, 4, 5], [3, 2, 1, 4, 5], [3, 2, 4, 1, 5], [3, 4, 2, 1, 5], [4, 2, 3, 1, 5], [4, 3, 2, 1, 5]].
		

Crossrefs

Formula

a(n+1) = A291445(n).
A291445(n) >= a(n) + A291519(n) for n > 1.
Showing 1-2 of 2 results.