A291532 Number of trees in all forests of (unlabeled) rooted identity trees with n vertices.
0, 1, 1, 3, 4, 9, 19, 40, 84, 186, 413, 922, 2082, 4733, 10831, 24928, 57648, 133923, 312393, 731328, 1717784, 4047111, 9561517, 22647521, 53770164, 127941813, 305046676, 728688803, 1743752229, 4179697971, 10034077377, 24123567285, 58076419495, 139996849639
Offset: 0
Keywords
Examples
a(4) = 4: : o : o o : o : : | : | : / \ : : o : o : o o : : | : | : | : : o : o : o : : | : : : : o : : : : : : :
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1, `if`(n<2, x^(t*n), 0), b(n, i-1, t)+add(binomial( b(i-1$2, 0), j)*x^(t*j)*b(n-i*j, i-1, t), j=1..n/i))) end: a:= n-> (p-> add(i*coeff(p,x,i), i=1..degree(p)))(b(n$2, 1)): seq(a(n), n=0..35);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0 || i == 1, If[n < 2, x^(t*n), 0], b[n, i - 1, t] + Sum[Binomial[ b[i - 1, i - 1, 0], j]*x^(t*j)*b[n - i*j, i - 1, t], {j, 1, n/i}]]]; a[n_] := Function[p, Sum[i*Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)