cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291532 Number of trees in all forests of (unlabeled) rooted identity trees with n vertices.

Original entry on oeis.org

0, 1, 1, 3, 4, 9, 19, 40, 84, 186, 413, 922, 2082, 4733, 10831, 24928, 57648, 133923, 312393, 731328, 1717784, 4047111, 9561517, 22647521, 53770164, 127941813, 305046676, 728688803, 1743752229, 4179697971, 10034077377, 24123567285, 58076419495, 139996849639
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2017

Keywords

Examples

			a(4) = 4:
:   o   :   o  o   :     o     :
:   |   :   |      :    / \    :
:   o   :   o      :   o   o   :
:   |   :   |      :   |       :
:   o   :   o      :   o       :
:   |   :          :           :
:   o   :          :           :
:       :          :           :
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1,
           `if`(n<2, x^(t*n), 0), b(n, i-1, t)+add(binomial(
           b(i-1$2, 0), j)*x^(t*j)*b(n-i*j, i-1, t), j=1..n/i)))
        end:
    a:= n-> (p-> add(i*coeff(p,x,i), i=1..degree(p)))(b(n$2, 1)):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0 || i == 1,
         If[n < 2, x^(t*n), 0], b[n, i - 1, t] + Sum[Binomial[
         b[i - 1, i - 1, 0], j]*x^(t*j)*b[n - i*j, i - 1, t], {j, 1, n/i}]]];
    a[n_] := Function[p, Sum[i*Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][
         b[n, n, 1]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>=1} k * A227774(n+1,k).
a(n) = Sum_{h=0..n} Sum_{t=0..n-h} t * A291529(n,h,t).