A291549 Numbers n such that both phi(n) and psi(n) are perfect squares.
1, 60, 170, 240, 315, 540, 679, 680, 960, 1500, 2142, 2160, 2720, 2835, 3840, 4250, 4365, 4860, 5770, 6000, 7875, 8568, 8640, 9154, 9809, 10880, 13500, 14322, 15360, 15435, 17000, 19278, 19440, 22413, 23080, 24000, 25515, 29682, 33271, 34272, 34560, 36616, 37114, 37500
Offset: 1
Examples
60 is a term because phi(60) = 16 and psi(60) = 144 are both perfect squares.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
filter:= proc(n) local F,psi,phi,p; F:= numtheory:-factorset(n); issqr( n*mul(1-1/p, p=F)) and issqr(n*mul(1+1/p,p=F)) end proc: select(filter, [$1..50000]); # Robert Israel, May 15 2019
-
Mathematica
Select[Range[10^5], AllTrue[{EulerPhi@ #, If[# < 1, 0, # Sum[MoebiusMu[d]^2/d, {d, Divisors@ #}]]}, IntegerQ@ Sqrt@ # &] &] (* Michael De Vlieger, Aug 26 2017, after Michael Somos at A001615 *)
-
PARI
a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)) isok(n) = issquare(eulerphi(n)) && issquare(a001615(n)); \\ after Charles R Greathouse IV at A001615
Comments