cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A291529 Number F(n,h,t) of forests of t (unlabeled) rooted identity trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 3, 0, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 5, 1, 0, 0, 5, 4, 0, 0, 4, 1, 0, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2017

Keywords

Comments

Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A227819.
Positive column sums per layer give A227774.

Examples

			n h\t: 0 1 2 3 4 5 : A227819 : A227774   : A004111
-----+-------------+---------+-----------+--------
0 0  : 1           :         :           : 1
-----+-------------+---------+-----------+--------
1 0  : 0 1         :       1 : .         :
1 1  : 0           :         : 1         : 1
-----+-------------+---------+-----------+--------
2 0  : 0 0 0       :       0 : . .       :
2 1  : 0 1         :       1 : .         :
2 2  : 0           :         : 1 0       : 1
-----+-------------+---------+-----------+--------
3 0  : 0 0 0 0     :       0 : . . .     :
3 1  : 0 0 1       :       1 : . .       :
3 2  : 0 1         :       1 : .         :
3 3  : 0           :         : 1 1 0     : 2
-----+-------------+---------+-----------+--------
4 0  : 0 0 0 0 0   :       0 : . . . .   :
4 1  : 0 0 0 0     :       0 : . . .     :
4 2  : 0 1 1       :       2 : . .       :
4 3  : 0 1         :       1 : .         :
4 4  : 0           :         : 2 1 0 0   : 3
-----+-------------+---------+-----------+--------
5 0  : 0 0 0 0 0 0 :       0 : . . . . . :
5 1  : 0 0 0 0 0   :       0 : . . . .   :
5 2  : 0 0 2 0     :       2 : . . .     :
5 3  : 0 2 1       :       3 : . .       :
5 4  : 0 1         :       1 : .         :
5 5  : 0           :         : 3 3 0 0 0 : 6
-----+-------------+---------+-----------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0 or i=1,
          `if`(n<2, x^(t*n), 0), b(n, i-1, t, h)+add(x^(t*j)*binomial(
           b(i-1$2, 0, h-1), j)*b(n-i*j, i-1, t, h), j=1..n/i)))
        end:
    g:= (n, h)-> b(n$2, 1, h)-`if`(h=0, 0, b(n$2, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..10);
  • Mathematica
    b[n_, i_, t_, h_] := b[n, i, t, h] = Expand[If[n == 0 || h == 0 || i == 1, If[n < 2, x^(t*n), 0], b[n, i - 1, t, h] + Sum[x^(t*j)*Binomial[b[i - 1, i - 1, 0, h - 1], j]*b[n - i*j, i - 1, t, h], {j, 1, n/i}]]];
    g[n_, h_] := b[n, n, 1, h] - If[h == 0, 0, b[n, n, 1, h - 1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[F[n, h, t], {n, 0, 10}, {h, 0, n}, {t, 0, n - h}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)

Formula

Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A004111(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A291532(n).
Sum_{h=0..n-2} Sum_{t=1..n-1-h} (h+1) * F(n-1,h,t) = A291559(n).
F(n,0,0) = A000007(n).
Showing 1-1 of 1 results.