A291565 Primitive balanced numbers: primitive numbers not of the form m*n where m, n > 1 are both primitive.
1, 2, 3, 12, 14, 15, 35, 56, 78, 140, 190, 248, 264, 270, 357, 418, 594, 616, 630, 812, 910, 1045, 1240, 1485, 1672, 2214, 2376, 2580, 3080, 3339, 3596, 3828, 3956, 4064, 4180, 4522, 4674, 5049, 5278, 5396, 5544, 5940, 6426, 7110, 7668, 8008, 8636, 8932, 10659, 11160, 11880, 12441, 12648, 15642
Offset: 1
Keywords
Examples
2 and 3 are balanced numbers, gcd(2,3)=1, so 6 is a non-primitive balanced number; 2 and 3 are primitive balanced numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
balQ[n_] := Divisible[DivisorSigma[1,n], EulerPhi[n]]; primQ[n_] := balQ[n] && Module[{d = Divisors[n], ans = True}, Do[If[GCD[d[[k]], n/d[[k]]]==1 && balQ[ d[[k]]] && balQ[n/d[[k]]], ans=False; Break[]], {k, 2, Floor[Length[d]/2]}]; ans]; Select[Range[16000],primQ] (* Amiram Eldar, Jun 26 2019 *)
Comments