A291566 Non-primitive balanced numbers: balanced numbers of the form m*n where m, n > 1 are both balanced.
6, 30, 42, 70, 105, 168, 210, 420, 570, 714, 744, 840, 1254, 1848, 2090, 2436, 2730, 2970, 3135, 3720, 5016, 6270, 6678, 8680, 9240, 10098, 10788, 11868, 12180, 12192, 12540, 13566, 14630, 15834, 16188, 20790, 21318, 24024, 24882, 25080, 25908, 26040, 26796, 32130, 43890, 48360
Offset: 1
Keywords
Examples
2 and 3 are balanced numbers, gcd(2,3)=1, so 6 is a non-primitive balanced number.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
balQ[n_] := Divisible[DivisorSigma[1,n], EulerPhi[n]]; nonprimQ[n_] := balQ[n] && Module[{d = Divisors[n], ans = False}, Do[If[GCD[d[[k]], n/d[[k]]]==1 && balQ[ d[[k]]] && balQ[n/d[[k]]], ans=True; Break[]], {k, 2, Floor[Length[d]/2]}]; ans]; Select[Range[50000], nonprimQ] (* Amiram Eldar, Jun 26 2019 *)
Comments