cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291574 The arithmetic function uhat(n,6,6).

Original entry on oeis.org

1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0, 1, -4, 1, 0, -1, 0
Offset: 1

Views

Author

Robert Price, Aug 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 6, 6], {n, 1, 70}]

Formula

Conjectures from Chai Wah Wu, Jun 10 2025: (Start)
a(n) = a(n-6) for n > 6.
G.f.: x*(4*x^5 - x^4 + x^2 - 1)/(x^6 - 1). (End)