A291615 Number of primes p < prime(n) such that p is a primitive root modulo prime(n) and also a primitive root modulo prime(p).
0, 1, 2, 1, 2, 3, 3, 3, 2, 3, 3, 2, 3, 1, 3, 3, 3, 2, 5, 3, 2, 2, 4, 5, 5, 5, 2, 3, 3, 3, 4, 2, 6, 3, 11, 4, 3, 8, 9, 8, 10, 7, 6, 3, 9, 6, 6, 6, 11, 10, 11, 9, 9, 9, 12, 11, 13, 3, 6, 10, 7, 15, 5, 6, 7, 13, 7, 8, 14, 10, 13, 19, 12, 14, 11, 18, 15, 11, 15, 8
Offset: 1
Keywords
Examples
a(2) = 1 since the prime 2 < prime(2) = 3 is a primitive root modulo prime(2) = 3. a(4) = 1 since the prime 3 < prime(4) = 7 is a primitive root modulo prime(4) = 7 and also a primitive root modulo prime(3) = 5. a(14) = 1 since the prime 3 < prime(14) = 43 is a primitive root modulo prime(14) = 43 and also a primitive root modulo prime(3) = 5.
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
- Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
rMod[m_,n_]:=rMod[m,n]=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2] p[n_]:=p[n]=Prime[n]; Do[r=0;Do[Do[If[Mod[p[g]^(Part[Divisors[p[n]-1],i])-1,p[n]]==0,Goto[aa]],{i,1,Length[Divisors[p[n]-1]]-1}]; Do[If[Mod[p[g]^(Part[Divisors[p[p[g]]-1],j])-1,p[p[g]]]==0,Goto[aa]],{j,1,Length[Divisors[p[p[g]]-1]]-1}]; r=r+1;Label[aa],{g,1,n-1}];Print[n," ",r],{n,1,80}]
Comments