cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301971 a(n) = [x^n] Product_{k>=1} 1/(1 - x^prime(k))^n.

Original entry on oeis.org

1, 0, 2, 3, 10, 30, 77, 252, 682, 2136, 6182, 18766, 56173, 169351, 512990, 1551828, 4720170, 14348289, 43751984, 133502873, 408029510, 1248460587, 3823949824, 11724787763, 35980251181, 110510334780, 339674840715, 1044812449722, 3215861978150, 9904301974294, 30521063942312, 94103983534015
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

Number of partitions of n into prime parts of n kinds.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^Prime[k])^n, {k, 1, n}], {x, 0, n}], {n, 0, 31}]

A300521 Expansion of Product_{k>=1} (1 - x^prime(k))^prime(k).

Original entry on oeis.org

1, 0, -2, -3, 1, 1, 3, 0, 9, 8, 4, -31, -12, -13, 20, -13, 48, -17, 74, -87, 8, -143, 175, -174, 349, -164, 369, -651, 520, -1004, 1142, -1218, 1652, -1739, 3291, -3933, 3546, -5743, 6170, -8022, 11435, -13230, 17196, -18706, 22958, -31884, 38420, -49802, 58916
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[(1 - x^Prime[k])^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[-Sum[DivisorSum[k, Boole[PrimeQ[#]] #^2 &] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^A000040(k))^A000040(k).
G.f.: exp(-Sum_{k>=1} A005063(k)*x^k/k).
Showing 1-2 of 2 results.