A291654 Number of distinct values in the prime tree starting with n.
35, 35, 34, 22, 12, 11, 5, 7, 10, 5, 10, 10, 6, 6, 7, 7, 4, 3, 5, 13, 14, 6, 1, 5, 5, 3, 4, 3, 2, 2, 4, 3, 2, 2, 3, 3, 1, 4, 6, 3, 3, 3, 1, 3, 7, 6, 2, 2, 2, 6, 6, 1, 6, 9, 5, 5, 5, 2, 4, 5, 2, 2, 2, 7, 8, 7, 6, 2, 3, 4, 5, 3, 1, 1, 4, 5, 4, 4
Offset: 1
Keywords
Examples
a(5) = 12 since the tree for 5 looks like this where, for example, the symbol -[+-]-> stands for p^2+p-1 and the symbol -| stands for a leaf: 5-[--]->19-[+-]->379-[--]->143261-| -[-+]->143263-[-+]->20524143907-| -[+-]->29-[--]->811-| -[++]->31-[--]->929-| -[+-]->991-[-+]->981091-|
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Ralf Steiner, Prime-trees, NMBRTHRY posting, 13 Aug 2017.
Programs
-
Maple
f:= proc(n) local R, agenda; agenda:= {n}; R:= {n}; while nops(agenda) > 0 do agenda:= select(isprime, map(t -> (t^2+t+1,t^2+t-1,t^2-t+1,t^2-t-1), agenda) minus R) ; R:= R union agenda; od; nops(R); end proc: map(f, [$1..100]); # Robert Israel, Aug 29 2017
-
Mathematica
f[n_] := Module[{R = {n}, agenda = {n}}, While[Length[agenda] > 0, agenda = Select[Flatten[Map[Function[t, {t^2 + t + 1, t^2 + t - 1, t^2 - t + 1, t^2 - t - 1}], agenda]] ~Complement~ R, PrimeQ]; R = Union[R, agenda]]; Length[R]]; Array[f, 100] (* Jean-François Alcover, Jul 30 2020, after Robert Israel *)
Comments