cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291676 Main diagonal of A291656.

Original entry on oeis.org

0, 1, 10, 3527, 123296356, 757031629267449, 1263498691933197473321646, 823340843273442113630752833831086703, 285062591046216676379736060856308430344065653125000
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((2*n - 1)!!)^n * Sum[1/(2*k - 1)^n, {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 25 2020 *)

Formula

a(n) = ((2n-1)!!)^n * Sum_{i=1..n} 1/(2*i-1)^n.
a(n) ~ 2^(n*(2*n + 1)/2) * n^(n^2) / exp(n^2 + 1/24). - Vaclav Kotesovec, Sep 25 2020

A335095 Square array T(n,k), n>=0, k>=0, read by antidiagonals: T(n,k) = ((2n+1)!!)^k * Sum_{j=1..n} 1/(2*j+1)^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 34, 71, 4, 0, 1, 152, 1891, 744, 5, 0, 1, 706, 55511, 164196, 9129, 6, 0, 1, 3368, 1745731, 41625144, 20760741, 129072, 7, 0, 1, 16354, 57365351, 11575291716, 56246975289, 3616621254, 2071215, 8
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2020

Keywords

Examples

			Square array begins:
  0,   0,      0,        0,           0, ...
  1,   1,      1,        1,           1, ...
  2,   8,     34,      152,         706, ...
  3,  71,   1891,    55511,     1745731, ...
  4, 744, 164196, 41625144, 11575291716, ...
		

Crossrefs

Column k=0..4 give A001477, A334670, A335090, A335091, A335092.
Rows n=0-2 give: A000004, A000012, A074606.
Main diagonal gives A335096.
Cf. A291656.

Programs

  • Mathematica
    T[n_, k_] := ((2*n + 1)!!)^k * Sum[1/(2*j + 1)^k, {j, 1, n}]; Table[T[k, n - k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    {T(n, k) = prod(j=1, n, 2*j+1)^k*sum(j=1, n, 1/(2*j+1)^k)}

Formula

T(0,k) = 0, T(1,k) = 1 and T(n,k) = ((2*n-1)^k+(2*n+1)^k) * T(n-1,k) - (2*n-1)^(2*k) * T(n-2, k) for n>1.
Showing 1-2 of 2 results.