A291680 Number T(n,k) of permutations p of [n] such that in 0p the largest up-jump equals k and no down-jump is larger than 2; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 9, 8, 4, 0, 1, 25, 36, 20, 10, 0, 1, 71, 156, 108, 58, 26, 0, 1, 205, 666, 586, 340, 170, 74, 0, 1, 607, 2860, 3098, 2014, 1078, 528, 218, 0, 1, 1833, 12336, 16230, 11888, 6772, 3550, 1672, 672, 0, 1, 5635, 53518, 85150, 69274, 42366, 23284, 11840, 5454, 2126
Offset: 0
Examples
T(4,1) = 1: 1234. T(4,2) = 9: 1243, 1324, 1342, 2134, 2143, 2314, 2341, 2413, 2431. T(4,3) = 8: 1423, 1432, 3124, 3142, 3214, 3241, 3412, 3421. T(4,4) = 4: 4213, 4231, 4312, 4321. T(5,5) = 10: 53124, 53142, 53214, 53241, 53412, 53421, 54213, 54231, 54312, 54321. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 2; 0, 1, 9, 8, 4; 0, 1, 25, 36, 20, 10; 0, 1, 71, 156, 108, 58, 26; 0, 1, 205, 666, 586, 340, 170, 74; 0, 1, 607, 2860, 3098, 2014, 1078, 528, 218; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, k) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, k), j=1..min(2, u))+ add(b(u+j-1, o-j, k), j=1..min(k, o))) end: T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[u_, o_, k_] := b[u, o, k] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, k], {j, 1, Min[2, u]}] + Sum[b[u+j-1, o-j, k], {j, 1, Min[k, o]}]]; T[n_, k_] := b[0, n, k] - If[k == 0, 0, b[0, n, k-1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *)
-
Python
from sympy.core.cache import cacheit @cacheit def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(2, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)]) def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1)) for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 30 2017
Comments