A291683 Number of permutations p of [n] such that in 0p the largest up-jump equals 2 and no down-jump is larger than 2.
0, 0, 1, 3, 9, 25, 71, 205, 607, 1833, 5635, 17577, 55515, 177191, 570699, 1852571, 6055079, 19910729, 65823751, 218654099, 729459551, 2443051213, 8210993363, 27685671843, 93625082139, 317470233149, 1079183930827, 3676951654519, 12554734605495, 42952566314235
Offset: 0
Keywords
Examples
a(2) = 1: 21. a(3) = 3: 132, 213, 231. a(4) = 9: 1243, 1324, 1342, 2134, 2143, 2314, 2341, 2413, 2431. a(5) = 25: 12354, 12435, 12453, 13245, 13254, 13425, 13452, 13524, 13542, 21345, 21354, 21435, 21453, 23145, 23154, 23415, 23451, 23514, 23541, 24135, 24153, 24315, 24351, 24513, 24531.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=2 of A291680.
Programs
-
Maple
b:= proc(u, o, k) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, k), j=1..min(2, u))+ add(b(u+j-1, o-j, k), j=1..min(k, o))) end: a:= n-> b(0, n, 2)-b(0, n, 1): seq(a(n), n=0..30);
-
Mathematica
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[2, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]]; a[n_] := b[0, n, 2] - b[0, n, 1]; Array[a, 30, 0] (* Jean-François Alcover, May 31 2019, from Maple *)
-
Python
from sympy.core.cache import cacheit @cacheit def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(2, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)]) def a(n): return b(0, n, 2) - b(0, n, 1) for n in range(31): print (a(n)) # Indranil Ghosh, Aug 30 2017
Comments