A291684 Number T(n,k) of permutations p of [n] such that 0p has a nonincreasing jump sequence beginning with k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 5, 5, 5, 0, 1, 9, 12, 14, 16, 0, 1, 17, 36, 36, 47, 52, 0, 1, 31, 81, 98, 117, 166, 189, 0, 1, 57, 174, 327, 327, 425, 627, 683, 0, 1, 101, 413, 788, 988, 1116, 1633, 2400, 2621, 0, 1, 185, 889, 1890, 3392, 3392, 4291, 6471, 9459, 10061
Offset: 0
Examples
T(3,1) = 1: 123. T(3,2) = 2: 213, 231. T(3,3) = 2: 312, 321. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 2; 0, 1, 5, 5, 5; 0, 1, 9, 12, 14, 16; 0, 1, 17, 36, 36, 47, 52; 0, 1, 31, 81, 98, 117, 166, 189; 0, 1, 57, 174, 327, 327, 425, 627, 683; 0, 1, 101, 413, 788, 988, 1116, 1633, 2400, 2621;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, j), j=1..min(t, u))+ add(b(u+j-1, o-j, j), j=1..min(t, o))) end: T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)): seq(seq(T(n,k), k=0..n), n=0..12);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, j], {j, 1, Min[t, u]}] + Sum[b[u + j - 1, o - j, j], {j, 1, Min[t, o]}]]; T[n_, k_] := b[0, n, k] - If[k == 0, 0, b[0, n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2018, after Alois P. Heinz *)
Formula
Sum_{k=0..n} T(n,k) = T(n+1,n+1) = A291685(n).
T(2n,n) = T(2n,n+1) for all n>0.
Comments