A291685 Number of permutations p of [n] such that 0p has a nonincreasing jump sequence.
1, 1, 2, 5, 16, 52, 189, 683, 2621, 10061, 40031, 159201, 650880, 2657089, 11062682, 46065143, 194595138, 822215099, 3513875245, 15021070567, 64785349064, 279575206629, 1214958544538, 5283266426743, 23106210465665, 101120747493793, 444614706427665
Offset: 0
Keywords
Examples
a(3) = 5 = 6 - 1 counts all permutations of {1,2,3} except 132 with jump sequence 1, 2, 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, j), j=1..min(t, u))+ add(b(u+j-1, o-j, j), j=1..min(t, o))) end: a:= n-> b(0, n$2): seq(a(n), n=0..30);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, j], {j, Min[t, u]}]+ Sum[b[u+j-1, o-j, j], {j, Min[t, o]}]]; a[n_] := b[0, n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
Comments