cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291709 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} (-1)^(j-1)*binomial(-k,j-1)*x^j/j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 73, 120, 1, 1, 1, 6, 33, 154, 501, 720, 1, 1, 1, 7, 46, 273, 1306, 4051, 5040, 1, 1, 1, 8, 61, 436, 2721, 12976, 37633, 40320, 1, 1, 1, 9, 78, 649, 4956, 31701, 147484, 394353, 362880, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2017

Keywords

Examples

			Square array B(j,k) begins:
   1,   1,   1,    1,    1, ...
   0,   1,   2,    3,    4, ...
   0,   1,   3,    6,   10, ...
   0,   1,   4,   10,   20, ...
   0,   1,   5,   15,   35, ...
   0,   1,   6,   21,   56, ...
Square array A(n,k) begins:
   1,   1,   1,    1,    1, ...
   1,   1,   1,    1,    1, ...
   1,   2,   3,    4,    5, ...
   1,   6,  13,   22,   33, ...
   1,  24,  73,  154,  273, ...
   1, 120, 501, 1306, 2721, ...
		

Crossrefs

Rows n=0-1 give A000012.
Main diagonal gives A293989.

Programs

  • Mathematica
    B[j_, k_] := (-1)^(j-1)*Binomial[-k, j-1];
    A[0, ] = 1; A[n, k_] := (n-1)!*Sum[B[j, k]*A[n-j, k]/(n-j)!, {j, 1, n}];
    Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)

Formula

Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} B(j,k)*A(n-j,k)/(n-j)! for n > 0.