A291722 Number T(n,k) of permutations p of [n] such that in 0p the sum of all jumps equals k + n; triangle T(n,k), n >= 0, 0 <= k <= n*(n-1)/2, read by rows.
1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 6, 5, 4, 1, 1, 1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1, 1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1, 1, 21, 105, 210, 350, 497, 554, 644, 567, 574, 420, 386, 238, 203, 105, 85, 35, 28, 8, 7, 1, 1
Offset: 0
Examples
T(4,0) = 1: 1234. T(4,1) = 6: 1243, 1324, 1342, 2134, 2314, 2341. T(4,2) = 6: 1432, 2143, 2431, 3214, 3241, 3421. T(4,3) = 5: 1423, 2413, 3124, 3412, 4321. T(4,4) = 4: 3142, 4213, 4231, 4312. T(4,5) = 1: 4123. T(4,6) = 1: 4132. T(5,5) = 15: 15234, 25134, 31542, 35124, 41235, 42153, 42531, 43152, 45123, 53214, 53241, 53421, 54213, 54231, 54312. Triangle T(n,k) begins: 1; 1; 1, 1; 1, 3, 1, 1; 1, 6, 6, 5, 4, 1, 1; 1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1; 1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- R. W. Kenyon, D. B. Wilson, Double-dimer pairings and skew Young diagrams, The Electronic Journal of Combinatorics 18(1) #P130, 2011.
- J. S. Kim, K. Mészáros, G. Panova, and D. B. Wilson. Dyck tilings, increasing trees, descents, and inversions, Journal of Combinatorial Theory A 122:9-27, 2014.
Crossrefs
Programs
-
Maple
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1, add(b(u-j, o+j-1)*x^(j-1), j=1..u)+ add(b(u+j-1, o-j)*x^(j-1), j=1..o))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)): seq(T(n), n=0..10);
-
Mathematica
(* Generating function for tiles for Dyck tilings above the zigzag path of order n *) (* Computed by looking at descents in the insertion sequence for the Dyck-tiling-ribbon bijection, described in the Kim-Meszaros-Panova-Wilson reference *) (* Since it's above the zigzag, all insertion positions are even *) (* When the second argument is specified, refines by position of last insertion *) tilegen[n_, sn_] := tilegen[n, sn] = If[n == 0 || n == 1, 1, Sum[tilegen[n - 1, j] If[j >= sn, t^(j - sn + 1), 1] // Expand, {j, 0, 2 (n - 2), 2}] ]; tilegen[n_] := tilegen[n + 1, 2 n]; T[n_, k_] := Coefficient[tilegen[n], t, k]; (* David B. Wilson, Dec 14 2018 *)
Formula
Sum_{k>=0} k * T(n,k) = A005990(n).
Comments