A291723 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S^3.
0, 0, 1, 0, 3, 1, 3, 6, 2, 15, 9, 21, 36, 27, 85, 72, 141, 222, 231, 513, 540, 945, 1422, 1741, 3222, 3876, 6337, 9339, 12447, 20809, 27135, 42546, 62195, 86709, 136866, 187278, 286113, 417303, 595852, 910431, 1281810, 1926984, 2810883, 4064571, 6097464
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 0, 3, 0, 3, 0, 1)
Programs
-
Mathematica
z = 60; s = x + x^3; p = 1 - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A154272 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291723 *) LinearRecurrence[{0,0,1,0,3,0,3,0,1},{0,0,1,0,3,1,3,6,2},60] (* Harvey P. Dale, Jun 07 2022 *)
Formula
G.f.: -((x^2 (1 + x^2)^3)/((1 - x + x^2) (-1 + x + x^3) (1 + 2 x + 2 x^2 + x^3 + x^4))).
a(n) = a(n-3) + 3*a(n-5) + 3*a(n-7) + a(n-9) for n >= 10.
Comments