A291735 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S - S^3.
1, 1, 3, 5, 10, 19, 35, 67, 124, 234, 441, 827, 1558, 2927, 5503, 10349, 19453, 36580, 68774, 129304, 243119, 457093, 859415, 1615837, 3038024, 5711986, 10739431, 20191855, 37963921, 71378219, 134202491, 252322113, 474405911, 891958973, 1677025407
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 2, 0, 3, 0, 3, 0, 1)
Programs
-
Mathematica
z = 60; s = x + x^3; p = 1 - s - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A154272 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291735 *) LinearRecurrence[{1,0,2,0,3,0,3,0,1},{1,1,3,5,10,19,35,67,124},40] (* Harvey P. Dale, Aug 25 2024 *)
Formula
G.f.: -(((1 + x^2) (1 + x^2 + 2 x^4 + x^6))/(-1 + x + 2 x^3 + 3 x^5 + 3 x^7 + x^9)).
a(n) = a(n-1) + 2*a(n-3) + 3*a(n-5) + 3*a(n-7) + a(n-9) for n >= 10.
Comments