cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291744 G.f. A(x) satisfies: A(x - x*A(x)) = x + 2*x*A(x).

Original entry on oeis.org

1, 3, 15, 105, 897, 8739, 93663, 1080909, 13246017, 170728251, 2298619851, 32162768805, 465875706873, 6964550221215, 107193366978651, 1695277029466917, 27504875620268325, 457183442035485927, 7776605660061178251, 135234473290510961097, 2402252449086179775861, 43557766261735276367055, 805650777590230815177879, 15191845940176304945626737, 291896599103455803872483709, 5712079123789080942126760083
Offset: 1

Views

Author

Paul D. Hanna, Aug 30 2017

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 15*x^3 + 105*x^4 + 897*x^5 + 8739*x^6 + 93663*x^7 + 1080909*x^8 + 13246017*x^9 + 170728251*x^10 + 2298619851*x^11 + 32162768805*x^12 +...
such that A(x - x*A(x)) = x + 2*x*A(x).
RELATED SERIES.
A(x - x*A(x)) = x + 2*x^2 + 6*x^3 + 30*x^4 + 210*x^5 + 1794*x^6 + 17478*x^7 + 187326*x^8 + 2161818*x^9 + 26492034*x^10 + 341456502*x^11 + 4597239702*x^12 +...
which equals x + 2*x*A(x).
Series_Reversion( x - x*A(x) ) = x + x^2 + 5*x^3 + 35*x^4 + 299*x^5 + 2913*x^6 + 31221*x^7 + 360303*x^8 + 4415339*x^9 + 56909417*x^10 + 766206617*x^11 + 10720922935*x^12 +...
which equals (2*x + A(x))/3.
A( (2*x + A(x))/3 ) = x + 4*x^2 + 26*x^3 + 218*x^4 + 2126*x^5 + 22986*x^6 + 268410*x^7 + 3331482*x^8 + 43492370*x^9 + 592851806*x^10 + 8393229602*x^11 + 122922601030*x^12 +...
which equals (A(x) - x) / (A(x) + 2*x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, n, A = 3*serreverse( x - x*A +x*O(x^n) ) - 2*x ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=x, B); for(i=1, n, B = (2*x + A)/3 +x*O(x^n); A = x*(1 + 2*subst(A, x, B))/(1 - subst(A, x, B)) ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = 3 * Series_Reversion( x - x*A(x) ) - 2*x.
(2) A(x) = x * (1 + 2*A(B(x))) / (1 - A(B(x))), where B(x) = (2*x + A(x))/3.
(3) A( (2*x + A(x))/3 ) = (A(x) - x) / (A(x) + 2*x).