A291770 A binary encoding of the zeros in ternary representation of n.
0, 0, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 15, 14, 14, 13, 12, 12, 13, 12, 12, 11, 10, 10, 9, 8, 8, 9, 8, 8, 11, 10, 10, 9, 8, 8, 9, 8, 8, 7, 6, 6
Offset: 1
Examples
n a(n) ternary(n) binary(a(n)) A007089(n) A007088(a(n)) -- ---- ---------- ------------ 1 0 1 0 2 0 2 0 3 1 10 1 4 0 11 0 5 0 12 0 6 1 20 1 7 0 21 0 8 0 22 0 9 3 100 11 10 2 101 10 11 2 102 10 12 1 110 1 13 0 111 0 14 0 112 0 15 1 120 1 16 0 121 0 17 0 122 0 18 3 200 11 19 2 201 10 20 2 202 10 21 1 210 1 22 0 211 0 23 0 212 0 24 1 220 1 25 0 221 0 26 0 222 0 27 7 1000 111 28 6 1001 110 29 6 1002 110 30 5 1010 101
Links
- Antti Karttunen, Table of n, a(n) for n = 1..59049
Programs
-
Mathematica
Table[FromDigits[IntegerDigits[n, 3] /. k_ /; k < 3 :> If[k == 0, 1, 0], 2], {n, 110}] (* Michael De Vlieger, Sep 11 2017 *)
-
Python
from sympy.ntheory.factor_ import digits def a(n): k=digits(n, 3)[1:] return int("".join('1' if i==0 else '0' for i in k), 2) print([a(n) for n in range(1, 111)]) # Indranil Ghosh, Sep 21 2017
-
Scheme
(define (A291770 n) (if (zero? n) n (let loop ((n n) (b 1) (s 0)) (if (< n 3) s (let ((d (modulo n 3))) (if (zero? d) (loop (/ n 3) (+ b b) (+ s b)) (loop (/ (- n d) 3) (+ b b) s)))))))
Comments