cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291770 A binary encoding of the zeros in ternary representation of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 15, 14, 14, 13, 12, 12, 13, 12, 12, 11, 10, 10, 9, 8, 8, 9, 8, 8, 11, 10, 10, 9, 8, 8, 9, 8, 8, 7, 6, 6
Offset: 1

Views

Author

Antti Karttunen, Sep 11 2017

Keywords

Comments

The ones in the binary representation of a(n) correspond to the nonleading zeros in the ternary representation of n. For example: ternary(33) = 1020 and binary(a(33)) = 101 (a(33) = 5).

Examples

			   n      a(n)    ternary(n)  binary(a(n))
                  A007089(n)  A007088(a(n))
  --      ----    ----------  ------------
   1        0            1           0
   2        0            2           0
   3        1           10           1
   4        0           11           0
   5        0           12           0
   6        1           20           1
   7        0           21           0
   8        0           22           0
   9        3          100          11
  10        2          101          10
  11        2          102          10
  12        1          110           1
  13        0          111           0
  14        0          112           0
  15        1          120           1
  16        0          121           0
  17        0          122           0
  18        3          200          11
  19        2          201          10
  20        2          202          10
  21        1          210           1
  22        0          211           0
  23        0          212           0
  24        1          220           1
  25        0          221           0
  26        0          222           0
  27        7         1000         111
  28        6         1001         110
  29        6         1002         110
  30        5         1010         101
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[IntegerDigits[n, 3] /. k_ /; k < 3 :> If[k == 0, 1, 0], 2], {n, 110}] (* Michael De Vlieger, Sep 11 2017 *)
  • Python
    from sympy.ntheory.factor_ import digits
    def a(n):
        k=digits(n, 3)[1:]
        return int("".join('1' if i==0 else '0' for i in k), 2)
    print([a(n) for n in range(1, 111)]) # Indranil Ghosh, Sep 21 2017
  • Scheme
    (define (A291770 n) (if (zero? n) n (let loop ((n n) (b 1) (s 0)) (if (< n 3) s (let ((d (modulo n 3))) (if (zero? d) (loop (/ n 3) (+ b b) (+ s b)) (loop (/ (- n d) 3) (+ b b) s)))))))
    

Formula

For all n >= 0, a(A000244(n)) = A000225(n), that is, a(3^n) = (2^n) - 1. [The records in the sequence].
For all n >= 1, A000120(a(n)) = A077267(n).
For all n >= 1, A278222(a(n)) = A291771(n).