A291784 a(n) = (psi(n) + phi(n))/2.
1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 14, 13, 15, 16, 16, 17, 21, 19, 22, 22, 23, 23, 28, 25, 27, 27, 30, 29, 40, 31, 32, 34, 35, 36, 42, 37, 39, 40, 44, 41, 54, 43, 46, 48, 47, 47, 56, 49, 55, 52, 54, 53, 63, 56, 60, 58
Offset: 1
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41 (page 96 of 2nd ed., pages 147ff of 3rd ed.).
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10000
- Marcin Mazur and Bogdan V. Petrenko, Generalizations of Arnold's version of Euler's theorem for matrices, Japanese Journal of Mathematics, 5:183-189, 2010.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
Programs
-
Maple
f:= proc(n) local P, p; P:= numtheory:-factorset(n); n*(mul((p-1)/p, p=P) + mul((p+1)/p, p=P))/2 end proc: map(f, [$1..100]); # Robert Israel, Feb 10 2019
-
Mathematica
psi[n_] := If[n == 1, 1, n*Times @@ (1 + 1/FactorInteger[n][[All, 1]])]; a[n_] := (psi[n] + EulerPhi[n])/2; Array[a, 100] (* Jean-François Alcover, Feb 25 2019 *)
-
PARI
A291784(n)=(eulerphi(n)+n*sumdivmult(n,d,issquarefree(d)/d))\2 \\ M. F. Hasler, Sep 03 2017
Formula
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 21/(4*Pi^2) = 0.531936... . - Amiram Eldar, Dec 05 2023
Comments