cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A291787 Trajectory of 45 under repeated application of the map k -> A291784(k).

Original entry on oeis.org

45, 48, 56, 60, 80, 88, 92, 94, 95, 96, 112, 120, 160, 176, 184, 188, 190, 216, 252, 324, 378, 486, 567, 594, 738, 876, 1032, 1224, 1488, 1776, 2112, 2624, 2656, 2672, 2680, 2976, 3552, 4224, 5248, 5312, 5344, 5360, 5952, 7104, 8448, 10496, 10624
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2017

Keywords

Comments

It may be that every trajectory under iteration of the map k -> A291784(k) which increases indefinitely will eventually merge with this sequence. This is certainly true for the terms 45 through 152 of A291788. - N. J. A. Sloane, Sep 24 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.

Crossrefs

Formula

a(n) = 2*a(n-7) for n >= 35, which proves this is unbounded. [Guy, Wall]

Extensions

More terms from Hugo Pfoertner, Sep 03 2017

A291785 Iterate the map A291784: k -> (psi(k)+phi(k))/2, starting with n, until a power of a prime (A000961) is reached, or -1 if that never happens.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 16, 13, 16, 16, 16, 17, 23, 19, 23, 23, 23, 23, 47, 25, 27, 27, 47, 29, 47, 31, 32, 83, 83, 83, 83, 37, 47, 47, 47, 41, 83, 43, 47, -1, 47, 47, -1, 49, -1, 83, 83, 53, 83, -1, -1, 59, 59, 59, -1, 61, 83, 83, 64, 83, 83, 67, -1, -1, -1, 71, -1, 73
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2017

Keywords

Comments

Primes and prime powers are fixed points under the map f(k) = (psi(k)+phi(k))/2. (If n = p^k, then psi(n) = p^k(1+1/p), phi(n) = p^k(1-1/p), and their average is p^k, so n is a fixed point under the map.)
Since f(n)>n if n is not a prime power, there can be no nontrivial cycles.
Wall (1985) observes that the trajectories of 45 and 50 are unbounded, so a(45) = a(50) = -1.
Also 48 and many more terms seem to have unbounded trajectories. - Hugo Pfoertner, Sep 03 2017.
Obviously any number in the trajectory of a number with unbounded trajectory (in particular that of 45, A291787) again has this property. A291788 is the union of all these. - M. F. Hasler, Sep 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.

Crossrefs

Programs

  • PARI
    A291785(n,L=n)={for(i=0,L,isprimepower(n=A291784(n))&&return(n));(-1)^(n>1)} \\ The search limit L=n is only experimental but appears quite conservative w.r.t. known data, cf. A291786. The algorithm assumes that there are no cycles except for the powers of primes. - M. F. Hasler, Sep 03 2017

Extensions

More terms from Hugo Pfoertner, Sep 03 2017

A291786 a(n) = number of iterations of k -> (psi(k)+phi(k))/2 (A291784) needed to reach a prime or a power of a prime or 1, or -1 if that doesn't happen.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 0, 2, 1, 0, 0, 3, 0, 2, 2, 1, 0, 6, 0, 1, 0, 5, 0, 4, 0, 0, 9, 8, 7, 6, 0, 5, 4, 3, 0, 5, 0, 2, -1, 1, 0, -1, 0, -1, 6, 5, 0, 4, -1, -1, 2, 1, 0, -1, 0, 4, 3, 0, 3, 2, 0, -1, -1, -1, 0, -1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2017

Keywords

Comments

Primes and prime powers are fixed points under the map f(k) = (psi(k)+phi(k))/2, so in that case we take a(n)=0. (If n = p^k, then psi(n) = p^k(1+1/p), phi(n) = p^k(1-1/p), and their average is p^k, so n is a fixed point under the map.)
Since f(n)>n if n is not a prime power, there can be no nontrivial cycles.
Wall (1985) observes that the trajectories of 45 and 50 are unbounded, so a(45) = a(50) = -1. See A291787, A291788.

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.

Crossrefs

Programs

  • PARI
    A291786(n,L=n)=n>1&&for(i=0,L,isprimepower(n)&&return(i);n=A291784(n));-(n>1) \\ The suggested search limit L=n is only empirical and might require revision. The code also currently assumes that the prime powers are the only cycles. - M. F. Hasler, Sep 03 2017

Formula

a(n) = 0 iff n is in A000961. - M. F. Hasler, Sep 03 2017

Extensions

Initial terms corrected and more terms from M. F. Hasler, Sep 03 2017

A291788 Numbers n whose trajectory under the map k -> (psi(k)+phi(k))/2 (A291784) grows without limit.

Original entry on oeis.org

45, 48, 50, 55, 56, 60, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105, 108, 111, 112, 115, 116, 117, 118, 119, 120, 122, 123, 124, 126, 133, 134, 135, 136, 140, 141, 142, 143, 144, 145, 146, 147, 152
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2017, based on data supplied by Hans Havermann

Keywords

Comments

See A291787 (where A291787(m) = 2*A291787(m-7) for m >= 35) for the trajectory of 45.
There is a similar proof that all the terms from 48 though 152 have a trajectory that merges with the trajectory of 45, and so doubles every 7 steps after a certain point. For example, the trajectory of 152 reaches 2^106*33 at step 390, is 2^107*33 at step 397, and thereafter doubles every 7 steps.- N. J. A. Sloane, Sep 24 2017

Crossrefs

Extensions

Terms 104 to 152 added by N. J. A. Sloane, Sep 24 2017

A291764 Restricted growth sequence transform of A291784, (psi(n) + phi(n))/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 24, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 35, 44, 45, 40, 46, 47, 48, 48, 49, 50, 45, 51, 52, 51, 53, 54, 55, 55, 56, 57, 56, 58, 59, 49, 60, 60, 61, 62, 63, 64, 65, 65, 66, 67, 68, 63, 69, 70, 71, 69, 72, 72
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A291784(n) = (eulerphi(n)+n*sumdivmult(n, d, issquarefree(d)/d))\2; \\ This function from M. F. Hasler
    write_to_bfile(1,rgs_transform(vector(65537,n,A291784(n))),"b291764_upto65537.txt");

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A318325 a(n) = Sum_{d|n} [moebius(n/d) > 0]*(sigma(d)-d).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 17, 1, 10, 9, 15, 1, 22, 1, 23, 11, 14, 1, 39, 6, 16, 13, 29, 1, 45, 1, 31, 15, 20, 13, 61, 1, 22, 17, 53, 1, 57, 1, 41, 34, 26, 1, 83, 8, 44, 21, 47, 1, 70, 17, 67, 23, 32, 1, 125, 1, 34, 42, 63, 19, 81, 1, 59, 27, 77, 1, 139, 1, 40, 50, 65, 19, 93, 1, 113, 40, 44, 1, 159, 23, 46, 33, 95, 1, 163, 21
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • PARI
    A318325(n) = sumdiv(n,d,(1==moebius(n/d))*(sigma(d)-d));

Formula

a(n) = Sum_{d|n} [A008683(n/d) == 1]*A001065(d).
a(n) = A051953(n) + A318326(n).
a(n) = A291784(n) - A318441(n).

A318320 a(n) = (psi(n) - phi(n))/2.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 32, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 42, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 64, 1, 33, 30, 32, 18, 62, 1, 38, 26, 60, 1, 60, 1, 39, 40, 42, 18, 72, 1, 56, 27, 43, 1, 84, 22, 45, 32, 52, 1, 96
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Differs from A069359 for the first time at n=30, where a(30) = 32, while A069359(30) = 31.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; a[n_] := (psi[n] - EulerPhi[n])/2; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A318320(n) = sumdiv(n,d,(-1==moebius(n/d))*d);
    
  • PARI
    A318320(n) = ((n*sumdivmult(n, d, issquarefree(d)/d))-eulerphi(n))/2;

Formula

a(n) = (A001615(n) - A000010(n))/2 = A292786(n)/2.
a(n) = A291784(n) - A000010(n).
a(n) = A318326(n) + A318442(n).
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 9/(4*Pi^2) = 0.227972... . - Amiram Eldar, Dec 05 2023

A318326 a(n) = Sum_{d|n} [moebius(n/d) < 0]*(sigma(d)-d).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 9, 0, 2, 2, 7, 0, 10, 0, 11, 2, 2, 0, 23, 1, 2, 4, 13, 0, 23, 0, 15, 2, 2, 2, 37, 0, 2, 2, 29, 0, 27, 0, 17, 13, 2, 0, 51, 1, 14, 2, 19, 0, 34, 2, 35, 2, 2, 0, 81, 0, 2, 15, 31, 2, 35, 0, 23, 2, 31, 0, 91, 0, 2, 15, 25, 2, 39, 0, 65, 13, 2, 0, 99, 2, 2, 2, 47, 0, 97, 2, 29, 2, 2, 2, 107, 0, 18, 19, 65, 0, 47
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • PARI
    A318326(n) = sumdiv(n,d,(-1==moebius(n/d))*(sigma(d)-d));

Formula

a(n) = Sum_{d|n} [A008683(n/d) == -1]*A001065(d).
a(n) = A318325(n) - A051953(n).
a(n) = A318320(n) - A318442(n).

A318674 Sum of squarefree divisors of n that have an even number of prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 7, 1, 15, 16, 1, 1, 7, 1, 11, 22, 23, 1, 7, 1, 27, 1, 15, 1, 32, 1, 1, 34, 35, 36, 7, 1, 39, 40, 11, 1, 42, 1, 23, 16, 47, 1, 7, 1, 11, 52, 27, 1, 7, 56, 15, 58, 59, 1, 32, 1, 63, 22, 1, 66, 62, 1, 35, 70, 60, 1, 7, 1, 75, 16, 39, 78, 72, 1, 11, 1, 83, 1, 42, 86, 87, 88, 23, 1, 32, 92, 47
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, MoebiusMu[#] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 06 2025 *)
  • PARI
    A318674(n) = sumdiv(n,d,(1==moebius(d))*d);

Formula

a(n) = Sum_{d|n} [A008683(d) > 0]*d.
a(n) = A048250(n) - A318675(n).
For all n >= 1, a(n) <= A318676(n).
a(n) = (A048250(n) + A023900(n))/2. - Amiram Eldar, Jun 06 2025
Showing 1-10 of 14 results. Next