cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A051953 Cototient(n) := n - phi(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, 1, 38, 35, 40, 17, 54, 1, 48, 27
Offset: 1

Views

Author

Labos Elemer, Dec 21 1999

Keywords

Comments

Unlike totients, cototient(n+1) = cototient(n) never holds -- except 2-phi(2) = 3 - phi(3) = 1 -- because cototient(n) is congruent to n modulo 2. - Labos Elemer, Aug 08 2001
Theorem (L. Redei): b^a(n) == b^n (mod n) for every integer b. - Thomas Ordowski and Robert Israel, Mar 11 2016
Let S be the sum of the cototients of the divisors of n (A001065). S < n iff n is deficient, S = n iff n is perfect, and S > n iff n is abundant. - Ivan N. Ianakiev, Oct 06 2023

Examples

			n = 12, phi(12) = 4 = |{1, 5, 7, 11}|, a(12) = 12 - phi(12) = 8, numbers not exceeding 12 and not coprime to 12: {2, 3, 4, 6, 8, 9, 10, 12}.
		

Crossrefs

Cf. A000010, A001065 (inverse Möbius transform), A005278, A001274, A083254, A098006, A049586, A051612, A053579, A054525, A062790 (Möbius transform), A063985 (partial sums), A063986, A290087.
Records: A065385, A065386.
Number of zeros in the n-th row of triangle A054521. - Omar E. Pol, May 13 2016
Cf. A063740 (number of k such that cototient(k) = n). - M. F. Hasler, Jan 11 2018

Programs

  • Haskell
    a051953 n = n - a000010 n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    with(numtheory); A051953 := n->n-phi(n);
  • Mathematica
    Table[n - EulerPhi[n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    A051953(n) = n - eulerphi(n); \\ Michael B. Porter, Jan 28 2010
    
  • Python
    from sympy.ntheory import totient
    print([i - totient(i) for i in range(1, 101)]) # Indranil Ghosh, Mar 17 2017

Formula

a(n) = n - A000010(n).
Equals Mobius transform (A054525) of A001065. - Gary W. Adamson, Jul 11 2008
a(A006881(n)) = sopf(A006881(n)) - 1; a(A000040(n)) = 1. - Wesley Ivan Hurt, May 18 2013
G.f.: sum(n>=1, A000010(n)*x^(2*n)/(1-x^n) ). - Mircea Merca, Feb 23 2014
From Ilya Gutkovskiy, Apr 13 2017: (Start)
G.f.: -Sum_{k>=2} mu(k)*x^k/(1 - x^k)^2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/zeta(s)). (End)
From Antti Karttunen, Sep 05 2018 & Apr 29 2022: (Start)
Dirichlet convolution square of A317846/A046644 gives this sequence + A063524.
a(n) = A003557(n) * A318305(n).
a(n) = A000010(n) - A083254(n).
a(n) = A318325(n) - A318326(n).
a(n) = Sum_{d|n} A062790(d) = Sum_{d|n, dA007431(d)*(A000005(n/d)-1).
a(n) = A048675(A318834(n)) = A276085(A353564(n)). [These follow from the formula below]
a(n) = Sum_{d|n, dA000010(d).
a(n) = A051612(n) - A001065(n).
(End)

A318320 a(n) = (psi(n) - phi(n))/2.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 32, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 42, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 64, 1, 33, 30, 32, 18, 62, 1, 38, 26, 60, 1, 60, 1, 39, 40, 42, 18, 72, 1, 56, 27, 43, 1, 84, 22, 45, 32, 52, 1, 96
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Differs from A069359 for the first time at n=30, where a(30) = 32, while A069359(30) = 31.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; a[n_] := (psi[n] - EulerPhi[n])/2; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A318320(n) = sumdiv(n,d,(-1==moebius(n/d))*d);
    
  • PARI
    A318320(n) = ((n*sumdivmult(n, d, issquarefree(d)/d))-eulerphi(n))/2;

Formula

a(n) = (A001615(n) - A000010(n))/2 = A292786(n)/2.
a(n) = A291784(n) - A000010(n).
a(n) = A318326(n) + A318442(n).
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 9/(4*Pi^2) = 0.227972... . - Amiram Eldar, Dec 05 2023

A318326 a(n) = Sum_{d|n} [moebius(n/d) < 0]*(sigma(d)-d).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 9, 0, 2, 2, 7, 0, 10, 0, 11, 2, 2, 0, 23, 1, 2, 4, 13, 0, 23, 0, 15, 2, 2, 2, 37, 0, 2, 2, 29, 0, 27, 0, 17, 13, 2, 0, 51, 1, 14, 2, 19, 0, 34, 2, 35, 2, 2, 0, 81, 0, 2, 15, 31, 2, 35, 0, 23, 2, 31, 0, 91, 0, 2, 15, 25, 2, 39, 0, 65, 13, 2, 0, 99, 2, 2, 2, 47, 0, 97, 2, 29, 2, 2, 2, 107, 0, 18, 19, 65, 0, 47
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • PARI
    A318326(n) = sumdiv(n,d,(-1==moebius(n/d))*(sigma(d)-d));

Formula

a(n) = Sum_{d|n} [A008683(n/d) == -1]*A001065(d).
a(n) = A318325(n) - A051953(n).
a(n) = A318320(n) - A318442(n).

A318442 a(n) = Sum_{d|n} [moebius(n/d) < 0]*A033879(d).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 2, 5, 1, 1, 1, 7, 6, 1, 1, 5, 1, 3, 8, 11, 1, -3, 4, 13, 5, 5, 1, 9, 1, 1, 12, 17, 10, -7, 1, 19, 14, -1, 1, 15, 1, 9, 11, 23, 1, -11, 6, 21, 18, 11, 1, 11, 14, 1, 20, 29, 1, -17, 1, 31, 15, 1, 16, 27, 1, 15, 24, 29, 1, -31, 1, 37, 25, 17, 16, 33, 1, -9, 14, 41, 1, -15, 20, 43, 30, 5, 1, -1, 18, 21, 32, 47, 22, -27, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • PARI
    A318442(n) = sumdiv(n,d,(-1==moebius(n/d))*(d+d-sigma(d)));

Formula

a(n) = Sum_{d|n} [A008683(n/d) == 1]*A033879(d).
a(n) = A318320(n) - A318326(n).
A083254(n) = A318441(n) - a(n).

A318441 a(n) = Sum_{d|n} [moebius(n/d) > 0]*A033879(d).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 5, 3, 10, -3, 12, 5, 7, 1, 16, -1, 18, -1, 11, 9, 22, -11, 19, 11, 14, 1, 28, -5, 30, 1, 19, 15, 23, -19, 36, 17, 23, -9, 40, -3, 42, 5, 14, 21, 46, -27, 41, 11, 31, 7, 52, -7, 39, -7, 35, 27, 58, -45, 60, 29, 24, 1, 47, 1, 66, 11, 43, 7, 70, -55, 72, 35, 30, 13, 59, 3, 78, -25, 41, 39, 82, -51, 63, 41, 55, -3, 88
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • PARI
    A318441(n) = sumdiv(n,d,(1==moebius(n/d))*(d+d-sigma(d)));

Formula

a(n) = Sum_{d|n} [A008683(n/d) == 1]*A033879(d).
a(n) = A291784(n) - A318325(n).
A083254(n) = a(n) - A318442(n).

A318501 a(n) = SumXOR_{d|n} [moebius(n/d) > 0]*(sigma(d)-d).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 17, 1, 10, 9, 15, 1, 20, 1, 23, 11, 14, 1, 39, 6, 16, 13, 29, 1, 43, 1, 31, 15, 20, 13, 49, 1, 22, 17, 49, 1, 55, 1, 41, 32, 26, 1, 75, 8, 42, 21, 47, 1, 70, 17, 67, 23, 32, 1, 97, 1, 34, 40, 63, 19, 79, 1, 59, 27, 75, 1, 107, 1, 40, 48, 65, 19, 91, 1, 109, 40, 44, 1, 131, 23, 46, 33, 95, 1, 155, 21
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2018

Keywords

Crossrefs

Programs

  • PARI
    A318501(n) = { my(v=0); fordiv(n, d, if(1==moebius(n/d), v=bitxor(v, sigma(d)-d))); (v); };

Formula

a(n) = A318502(n) XOR A318503(n).
Showing 1-6 of 6 results.