A291789 Trajectory of 270 under repeated application of k -> (phi(k)+sigma(k))/2.
270, 396, 606, 712, 851, 852, 1148, 1416, 2032, 2488, 2960, 4110, 5512, 6918, 8076, 10780, 16044, 23784, 33720, 55240, 73230, 97672, 118470, 169840, 247224, 350260, 442848, 728448, 1213440, 2124864, 4080384, 8159616, 13515078, 15767596, 18626016, 29239504, 39012864, 62623600, 92580308
Offset: 0
Keywords
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..515 [Terms through a(250) from Hugo Pfoertner, terms a(251)-a(356) from N. J. A. Sloane]
- Sean A. Irvine, Illustration of A291789 showing a(n+1)/a(n) (red), cumulative mean of a(n+1)/a(n) (green), and power of 2 in a(n) (blue)
- Hugo Pfoertner, Illustration of A291789 using a recursive 5th order Butterworth filter with normalized cut-off frequency of 0.1 (0.5<->Nyquist frequency) to smooth the data.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 14.
Crossrefs
Programs
-
Maple
orbit:= proc(n, m) uses numtheory; local V,k; V:= Vector(m); V[1]:= n; for k from 2 to m do V[k]:= (sigma(V[k-1])+ phi(V[k-1]))/2 od: convert(V,list) end proc: orbit(270, 200); # Robert Israel, Sep 07 2017
-
Mathematica
NestWhileList[If[! IntegerQ@ #, -1/2, (DivisorSigma[1, #] + EulerPhi@ #)/2] &, 270, Nor[! IntegerQ@ #, SameQ@ ##] &, 2, 38] (* Michael De Vlieger, Sep 19 2017 *)
Comments