A291849 Numbers k such that k^3 is the sum of two nonzero 4th powers.
8, 128, 648, 2048, 4913, 5000, 10368, 19208, 32768, 52488, 78608, 80000, 117128, 165888, 228488, 307328, 397953, 405000, 524288, 551368, 668168, 839808, 912673, 1042568, 1257728, 1280000, 1555848, 1874048, 2238728, 2654208, 3070625, 3125000, 3655808, 4251528
Offset: 1
Keywords
Examples
8^3 = 2^9 = 4^4 + 4^4, so 8 is in the sequence. 4913^3 = 17^9 = 17^8 * (1 + 2^4) = 289^4 + 578^4, so 4913 is in the sequence.
Programs
-
Mathematica
fourthPowerFlags = Union@Flatten@Table[a^4 + b^4 && GCD[a, b] == 1, {a, 4}, {b, a, 4}]; Take[Union@Flatten@Table[k^4 * fourthPowerFlags[[j]]^3, {k, 27}, {j, 6}], 34]
Comments